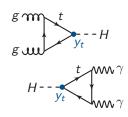
Top-quark couplings Yukawa coupling, FCNC, W helicity

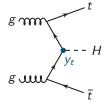
Andrey Popov^{1,2}
On behalf of the ATLAS, CDF,
CMS, and DØ collaborations

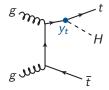
¹UCL (Louvain-la-Neuve, BE)

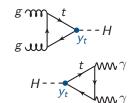
²also at SINP MSU (Moscow, RU)

Top at twenty FNAL, 9-10 April 2015

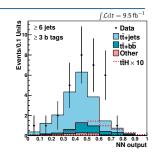




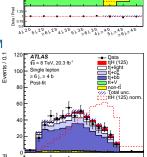

- ullet Top quark is special: its Yukawa coupling is of natural scale, $y_t \sim 1$
 - An indication of a special role in EWSB?


- ullet Top quark is special: its Yukawa coupling is of natural scale, $y_t \sim 1$
 - An indication of a special role in EWSB?
- Can be probed in H production via gluon fusion or $H \to \gamma \gamma$ decays thanks to top-quark loops
 - BSM particles can contribute to the loops

- ullet Top quark is special: its Yukawa coupling is of natural scale, $y_t \sim 1$
 - An indication of a special role in EWSB?
- Can be probed in H production via gluon fusion or $H \to \gamma \gamma$ decays thanks to top-quark loops
 - BSM particles can contribute to the loops
- Direct access to $|y_t|$ is provided in $t\bar{t}H$ production
 - $\circ~$ But a challenging process: $\sigma_{t\bar{t}H}\approx 130\,\mathrm{fb}$ at 8 TeV, $\sigma_{t\bar{t}H}/\sigma_{t\bar{t}}\sim 10^{-3}$



- Search^[1] by CDF:
 - \circ NN analysis in $t \bar{t} \to \ell + {\sf jets}$ channel
 - Obs. (exp.) upper limit: $\sigma/\sigma_{t\bar{t}H}^{SM} < 20.5 (12.6)$



- Search^[1] by CDF:
 - NN analysis in $t\bar{t} \rightarrow \ell + \text{jets channel}$
 - Obs. (exp.) upper limit: $\sigma/\sigma_{t\bar{t}H}^{SM} < 20.5 (12.6)$

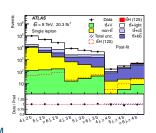
- ATLAS search^[2] with MEM and NN
 - $t\bar{t} \rightarrow \ell + \text{jets}$ or $\ell\ell + \text{jets}$
 - NNs trained in signal-enriched bins
 - In addition, classification $t\bar{t}H$ vs $t\bar{t}b\bar{b}$ with MEM
 - MEM decisions are fed into the NNs
 - Simultaneous fit of multiple jet-tag bins
 - NN responses in signal-enriched bins

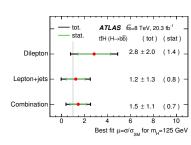
 - H_T^{jet} or H_T^{all} in signal-depleted bins

-08 -06 -04 -02

Post-fit

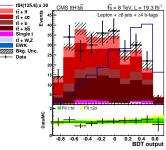
^[2] arXiv:1503.05066, submitted to Eur. Phys. J. C

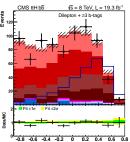



^[1] Phys. Rev. Lett. 109 (2012) 181802

- Search^[1] by CDF:
 - $\circ~$ NN analysis in $t\overline{t} \rightarrow \ell + {\rm jets}$ channel
 - Obs. (exp.) upper limit: $\sigma/\sigma_{t\bar{t}H}^{SM} < 20.5 (12.6)$

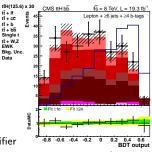
- ATLAS search^[2] with MEM and NN
 - $\circ t\bar{t} \rightarrow \ell + \text{jets or } \ell\ell + \text{jets}$
 - NNs trained in signal-enriched bins
 - In addition, classification $t\bar{t}H$ vs $t\bar{t}b\bar{b}$ with MEM
 - MEM decisions are fed into the NNs
 - Simultaneous fit of multiple jet-tag bins
 - NN responses in signal-enriched bins
 - $H_{\rm T}^{\rm jet}$ or $H_{\rm T}^{\rm all}$ in signal-depleted bins
 - Results:
 - Signal strength $\mu = \sigma/\sigma_{t\bar{t}H}^{\rm SM} = 1.5 \pm 1.1$
 - Obs. (exp.) limit: $\mu < 3.4$ (2.2)
- [1] Phys. Rev. Lett. 109 (2012) 181802
- [2] arXiv:1503.05066, submitted to Eur. Phys. J. C

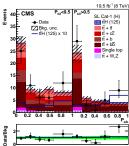




- ullet Two searches by CMS in H o bar b
 - \circ Both utilise $t ar t o \ell(\ell) + {\sf jets}$ decays
 - \circ Historically first analysis [1] exploits BDT

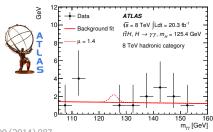
- Additional BDT in some $\ell + \text{jets}$ categories to discriminate $t\bar{t}H$ vs $t\bar{t}b\bar{b}$
- It is fed as an input to the final BDT
- Results: $\mu=0.7\pm1.9$


^[1] JHEP09 (2014) 087


^[2] arXiv:1502.02485, submitted to Eur. Phys. J. C

- ullet Two searches by CMS in H o bar b
 - \circ Both utilise $t ar t o \ell(\ell) + {\sf jets}$ decays
 - Historically first analysis^[1] exploits BDT

- Additional BDT in some $\ell + \text{jets}$ categories to discriminate $t\bar{t}H$ vs $t\bar{t}b\bar{b}$
- It is fed as an input to the final BDT
- Results: $\mu=0.7\pm1.9$
- Second search^[2] utilises MEM
 - Advanced b-tag selection using likelihood classifier
 - Discrimination $t\bar{t}H$ vs $t\bar{t}b\bar{b}$ with MEM
 - 2D fit to the two discriminators
 - Results: $\mu = 1.2^{+1.6}_{-1.5}$

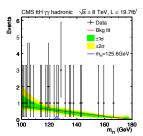


- [1] JHEP09 (2014) 087
- [2] arXiv:1502.02485, submitted to Eur. Phys. J. C

Search for $t\bar{t}H$, $H \rightarrow \gamma\gamma$


- Profit from high purity of the $H o \gamma \gamma$ channel
- Similar approaches by CMS^[1] and ATLAS^[2]
 - All decays of $t\bar{t}$ system considered
 - Amount of signal and non-resonant bkg estimated from a fit to m_{\gamma\gamma}
 - Results (7+8 TeV):

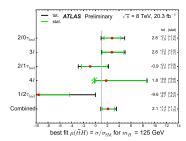
CMS: $\mu = 2.7^{+2.6}_{-1.8}$, ATLAS: $\mu = 1.3^{+2.6}_{-1.7}$



^[2] Phys. Lett. B740 (2015) 222

CMS ttH yy leptonic

120


140

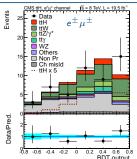
 $\sqrt{s} = 8 \text{ TeV} \cdot I = 19.7 \text{ fb}^1$

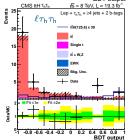
m, (GeV)

Search for $t\bar{t}H$ in multilepton channel

- Targets $H o WW^*$, ZZ^* , and $\tau \tau$ decays
- ATLAS search^[1]:
 - $^{\mathsf{A}}_{\mathsf{T}} \circ \mathsf{Signatures}: \ \ell^{\pm}\ell^{\pm}, \ 3\ell, \ \ell^{\pm}\ell^{\pm}\tau_{\mathsf{h}}, \ 4\ell, \ \ell\tau_{\mathsf{h}}^{+}\tau_{\mathsf{h}}^{-}$
 - Counting experiment
 - \circ Combined result: $\mu=2.1^{+1.4}_{-1.2}$

Search for $t\bar{t}H$ in multilepton channel


- Targets $H o WW^*$, ZZ^* , and $\tau \tau$ decays
- ATLAS search^[1]:


$$^{\Delta}_{T}$$
 \circ Signatures: $\ell^{\pm}\ell^{\pm}$, 3ℓ , $\ell^{\pm}\ell^{\pm}\tau_{h}$, 4ℓ , $\ell\tau_{h}^{+}\tau_{h}^{-}$

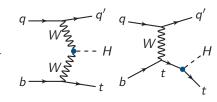
- Counting experiment
- 2 $\stackrel{ extstyle 4}{ extstyle 5}$ \circ Combined result: $\mu=2.1^{+1.4}_{-1.2}$
- CMS analysis^[2]:
 - \circ $\ell^{\pm}\ell^{\pm}$, 3ℓ , 4ℓ , $\ell\tau_{\rm h}^{+}\tau_{\rm h}^{-}$ channels
 - \circ Signal extracted with a fit to # jets in 4 ℓ and to BDT response elsewhere
 - o Results in individual channels:

Comb. with
$$b\bar{b}$$
 and $\gamma\gamma$:
$$\mu = 2.8^{+1.0}_{-0.9}$$

$$4\ell - 4.7^{+5.0}_{-1.3}$$

$$\ell\tau_h\tau_h - 1.3^{+6.3}_{-5.5}$$

- [1] CONF-2015-006
- [2] JHEP09 (2014) 087

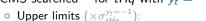


Sign of y_t : tH

- Can access sign of y_t (defined w.r.t. HWW coupling)
 - $\circ~$ Via interference in ${\it H} \rightarrow \gamma \gamma~{\rm loop}$

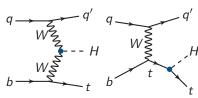
•
$$\mathcal{B}_{H \to \gamma \gamma}^{y_t = -1} = 2.4 \times \mathcal{B}_{H \to \gamma \gamma}^{SM}$$

- At tree level in tHq production
 - $y_t = -1$ leads to imes 13 increase in σ



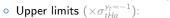
Sign of y_t : tH

- Can access sign of y_t (defined w.r.t. HWW coupling)
 - $\circ~$ Via interference in ${\it H} \rightarrow \gamma \gamma~{\rm loop}$

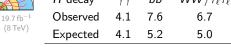

•
$$\mathcal{B}_{H \to \gamma \gamma}^{y_t = -1} = 2.4 \times \mathcal{B}_{H \to \gamma \gamma}^{SM}$$

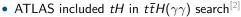
- At tree level in tHq production
 - $y_t = -1$ leads to imes 13 increase in σ
- CMS searched^[1] for tHq with $y_t = -1$

H decay	$\gamma\gamma$	$bar{b}$	$WW/ au_\ell au_\ell$
Observed	4.1	7.6	6.7
Expected	4.1	5.2	5.0

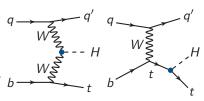


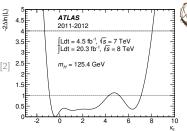
Sign of y_t : tH

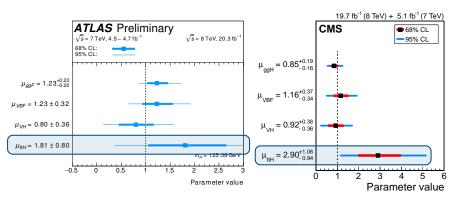

- Can access sign of y_t (defined w.r.t. HWW coupling)
 - \circ Via interference in $H \to \gamma \gamma$ loop


•
$$\mathcal{B}_{H \to \gamma \gamma}^{y_t = -1} = 2.4 \times \mathcal{B}_{H \to \gamma \gamma}^{SM}$$

- At tree level in tHq production
 - $y_t = -1$ leads to $\times 13$ increase in σ
- CMS searched^[1] for tHq with $y_t = -1$




• • •	(LITIC	/
H decay	$\gamma\gamma$	$bar{b}$	$WW/ au_\ell au_\ell$
Observed	4.1	7.6	6.7
Expected	4.1	5.2	5.0


- Derived constraints on $\kappa_t = y_t/y_t^{\text{SM}}$
- Driven in part by $\mathcal{B}(H \to \gamma \gamma)$
- [1] CMS PAS HIG-14-001, HIG-14-015, HIG-14-026
- [2] Phys. Lett. B740 (2015) 222

ATLAS and CMS combinations

 \bullet Signal strengths from global ATLAS $^{[1]}$ and CMS $^{[2]}$ fits

^[1] CONF-2015-007

^[2] arXiv:1412.8662, submitted to Eur. Phys. J. C

Flavour-changing neutral currents with top quarks

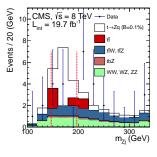
Flavour-changing neutral currents

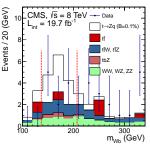
- Top quark is special: it is the heaviest known particle
 - Can be sensitive to BSM interactions
- FCNC are highly suppressed in SM but can be enhanced in a number of BSM theories:

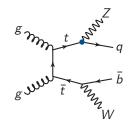
		SM	QS	2HDM	FC 2HDM	MSSM	₿ SUSY
	$t \to uZ$	8×10^{-17}	1.1×10^{-4}	_	-	2×10^{-6}	3×10^{-5}
ratios	$t \to u \gamma$	3.7×10^{-16}	7.5×10^{-9}	-	-	2×10^{-6}	1×10^{-6}
rat	$t \to ug$	3.7×10^{-14}	1.5×10^{-7}	-	-	8×10^{-5}	$2 imes 10^{-4}$
	$t \to u H$	2×10^{-17}	4.1×10^{-5}	5.5×10^{-6}	-	10^{-5}	$\sim 10^{-6}$
ranchir	$t \to c Z$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	2×10^{-6}	3×10^{-5}
rar	$t \to c \gamma$	4.6×10^{-14}	7.5×10^{-9}	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}
Δ	$t \to cg$	4.6×10^{-12}	1.5×10^{-7}	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	$2 imes 10^{-4}$
	$t \to c H$	3×10^{-15}	4.1×10^{-5}	1.5×10^{-3}	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$
		A muilar Ca	avadra Aa	ta Phys Do	lon D25 (2	004) 2605	

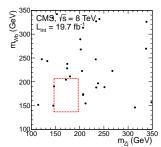
Aguilar-Saavedra, Acta Phys. Polon. B35 (2004) 2695

- All these vertices were probed at Tevatron and LHC, collectively
 - Because of the large number of searches, only those with most stringent limits are discussed in detail


FCNC tZq


• Search^[1] for $t\bar{t} \to WbZq$




- \circ $Z
 ightarrow \ell^+\ell^-$, $W
 ightarrow \ell
 u$
- Counting experiment in 2D mass window
- o Observed limit:

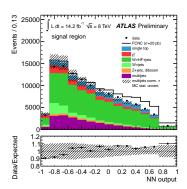
$$\mathcal{B}(t \to qZ) < 5 \cdot 10^{-4} \ (7 + 8 \, \text{TeV})$$

[1] Phys. Rev. Lett. 112 (2014) 171802

FCNC tgq

- The tgq vertex is studied in single-top production
 - \circ t o gq decays would be too hard to identify in hadronic environment

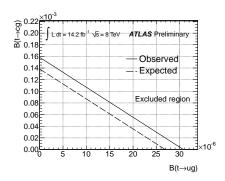
u, c


FCNC tgq

- The *tgq* vertex is studied in single-top production
 - o t o gq decays would be too hard to identify in hadronic environment
- Most stringent limits are from ATLAS^[1]

- \circ Signature: $gq o t o b\ell
 u$
- FCNC signal extracted with NN
 - Similar kinematics for tgu and tgc

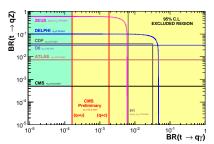
FCNC tgq

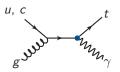

- The tgq vertex is studied in single-top production
 - \circ t o gq decays would be too hard to identify in hadronic environment
- Most stringent limits are from ATLAS^[1]

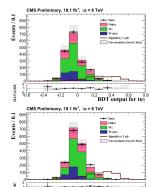
- \circ Signature: $gq o t o b\ell
 u$
- FCNC signal extracted with NN
 - Similar kinematics for tgu and tgc
 - Results (observed):

$$\mathcal{B}(t \to ug) < 3.1 \cdot 10^{-5}$$

 $\mathcal{B}(t \to cg) < 1.6 \cdot 10^{-4}$




FCNC $t\gamma q$


- Studied^[1] in single-top production
 - \circ Focus on $t o b \mu
 u$ decays only
 - Signal events identified with BDT
 - Separate BDTs trained for $t\gamma u$ and $t\gamma c$ signals
 - Observed upper limits:

$$\mathcal{B}(t \to u\gamma) < 1.6 \cdot 10^{-4}$$

 $\mathcal{B}(t \to c\gamma) < 1.8 \cdot 10^{-3}$

BDT output for tey

FCNC tHq in $t\bar{t} \rightarrow WbHc$

Re-interpretation of a search^[1] for heavy (pseudo)scalar in 2HDM

Multichannel counting experiment

• Multilepton channel: $2\ell 1\ell_3$, $3\ell 1\ell_3$ $\ell = e, \mu$ and $\ell_3 = e, \mu, \tau_{\mathsf{had}}$

 $\circ \ \ \, {\rm Diphoton}\,\, {\rm channel:}\,\, 2\gamma\,\ell_3,\, 2\gamma\,\ell\ell_3$

 $120 < m_{\gamma\gamma} < 130\,{
m GeV}$

Further categorised by number of OSSF pairs, relation to m_Z , presence of b-tagged jets, $\not\!\!E_{\rm T} \Rightarrow \sim 170$ categories in total

19.5 fb⁻¹ (8 TeV)

• Observed limit: $\mathcal{B}(t \to cH) < 5.6 \cdot 10^{-3}$

Ten most sensitive categories

Channel	E ^{miss} (GeV)	$N_{\rm b}$	Obs.	Exp.	Sig.
	(50, 100)	≥1	1	2.3 ± 1.2	2.88 ± 0.39
	(30, 50)	≥1	2	1.1 ± 0.6	2.16 ± 0.30
	(0, 30)	≥1	2	2.1 ± 1.1	1.76 ± 0.24
$\gamma\gamma\ell$	(50, 100)	0	7	9.5 ± 4.4	2.22 ± 0.31
	(100, ∞)	≥1	0	0.5 ± 0.4	0.92 ± 0.14
	(100, ∞)	0	1	2.2 ± 1.0	0.94 ± 0.17
$\ell\ell\ell$	(50, 100)	≥1	48	48 ± 23	9.5 ± 2.3
(OSSF1, below-Z)	(0, 50)	≥1	34	42 ± 11	5.9 ± 1.2
$\ell\ell\ell$	(50, 100)	≥1	29	26 ± 13	5.9 ± 1.3
(OSSF0)	(0, 50)	≥1	29	23 ± 10	4.3 ± 1.1

Signal expectations are for $\mathcal{B}(t o cH)=1\%$

Overview of results from Tevatron and LHC

Ехр.	\sqrt{s}	$\mathcal{B}(t o u\gamma)$	$\mathcal{B}(t o c\gamma)$	Reference
CDF	1.96 TeV	$3.2 \cdot 10^{-2}$		PRL 80 (1998) 2525
CMS	8 TeV	$1.6 \cdot 10^{-4}$	$1.8 \cdot 10^{-3}$	TOP-14-003
		$\mathcal{B}(t o uZ)$	$\mathcal{B}(t \to cZ)$	
CDF	1.96 TeV	3.7 ·	10^{-2}	PRL 101 (2008) 192002
DØ	1.96 TeV	3.2 ·	10^{-2}	PLB 701 (2011) 313
ATLAS	7 TeV	7.3 ·	10^{-3}	JHEP 09 (2012) 139
CMS	7 TeV	$5.1 \cdot 10^{-3}$	$1.1\cdot 10^{-1}$	TOP-12-021
CMS	7+8 TeV	5 · 1	-0^{-4}	PRL 112 (2014) 171802
		$\mathcal{B}(t o ug)$	$\mathcal{B}(t o cg)$	
CDF	1.96 TeV	$3.9 \cdot 10^{-4}$	$5.7 \cdot 10^{-3}$	PRL 102 (2009) 151801
DØ	1.96 TeV	$2.0 \cdot 10^{-4}$	$3.9 \cdot 10^{-3}$	PLB 693 (2010) 81
ATLAS	7 TeV	$5.7 \cdot 10^{-5}$	$2.7 \cdot 10^{-4}$	PLB 712 (2012) 351
ATLAS	8 TeV	$3.1 \cdot 10^{-5}$	$1.6 \cdot 10^{-4}$	CONF-2013-063
CMS	7 TeV	$3.6 \cdot 10^{-4}$	$3.4\cdot 10^{-3}$	TOP-14-007
		$\mathcal{B}(t o uH)$	$\mathcal{B}(t o cH)$	
ATLAS	7+8 TeV	7.9 ·	10^{-3}	JHEP 06 (2014) 008
CMS	8 TeV	_	$5.6 \cdot 10^{-3}$	PRD 90 (2014) 112013
CMS	8 TeV	_	$9.3 \cdot 10^{-3}$	TOP-13-017

Overview of results from Tevatron and LHC

- Getting closer to some BSM models
 - E.g. in flavour-violating 2HDM one can expect^[1] branching ratios

$$\mathcal{B}(t o cg) \sim 10^{-4}, \quad \mathcal{B}(t o cH) \sim 10^{-3}$$

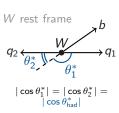
[1] Aguilar-Saavedra, Acta Phys. Polon. B35 (2004) 2695 and refs. therein

		$\mathcal{B}(t o ug)$	$\mathcal{B}(t o cg)$	
CDF	1.96 TeV	$3.9 \cdot 10^{-4}$	$5.7 \cdot 10^{-3}$	PRL 102 (2009) 151801
DØ	1.96 TeV	$2.0 \cdot 10^{-4}$	$3.9 \cdot 10^{-3}$	PLB 693 (2010) 81
ATLAS	7 TeV	$5.7\cdot10^{-5}$	$2.7 \cdot 10^{-4}$	PLB 712 (2012) 351
ATLAS	8 TeV	$3.1 \cdot 10^{-5}$	$(1.6 \cdot 10^{-4})$	CONF-2013-063
CMS	7 TeV	$3.6 \cdot 10^{-4}$	$3.4 \cdot 10^{-3}$	TOP-14-007
		$\mathcal{B}(t o uH)$	$\mathcal{B}(t o cH)$	
ATLAS	7+8 TeV	7.9 ·	10^{-3}	JHEP 06 (2014) 008
CMS	8 TeV	_	$(5.6 \cdot 10^{-3})$	PRD 90 (2014) 112013
CMS	8 TeV	_	$9.3 \cdot 10^{-3}$	TOP-13-017

W-boson-helicity fractions in top-quark decays

- Top quark is special: it decays before the hadronisation
 - Its decay products thus retain information about Wtb vertex
 - \circ Of particular interest are W-boson-helicity fractions

- Top quark is special: it decays before the hadronisation
 - Its decay products thus retain information about Wtb vertex
 - Of particular interest are W-boson-helicity fractions
- Experimentally, the helicity fractions can be deduced from distribution in $\cos \theta^*$

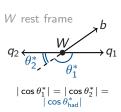

$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta^*} &= \frac{3}{8} F_L \left(1 - \cos\theta^*\right)^2 + \\ &\qquad \frac{3}{4} F_0 \sin^2\theta^* + \frac{3}{8} F_R \left(1 + \cos\theta^*\right)^2, \end{split}$$

 $V \xleftarrow{\text{rest frame}} b$ $V \xleftarrow{\theta^*} \ell$

where $F_L + F_0 + F_R = 1$

- Top quark is special: it decays before the hadronisation
 - Its decay products thus retain information about Wtb vertex
 - Of particular interest are W-boson-helicity fractions
- Experimentally, the helicity fractions can be deduced from distribution in $\cos \theta^*$

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta^*} = \frac{3}{8} F_L (1 - \cos\theta^*)^2 + q_2 \underbrace{\frac{W}{\theta_2^*} \qquad \theta_1^*}_{|\cos\theta_{had}^*| = |\cos\theta_{had}^*|} q_2$$



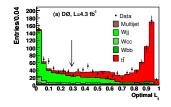
where
$$F_L + F_0 + F_R = 1$$

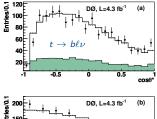
 \circ For decays $t \to had$ the d-type quark is not known, but can still extract limited information from $|\cos \theta_{had}^*|$

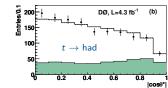
- Top quark is special: it decays before the hadronisation
 - Its decay products thus retain information about Wtb vertex
 - Of particular interest are W-boson-helicity fractions
- Experimentally, the helicity fractions can be deduced from distribution in $\cos \theta^*$

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta^*} = \frac{3}{8} F_L (1 - \cos\theta^*)^2 + q_2 \underbrace{\frac{W}{\theta_2^*} \qquad \theta_1^*}_{|\cos\theta_{had}^*| = |\cos\theta_{had}^*|} q_2 \underbrace{\frac{W}{\theta_2^*} \qquad \theta_1^*}_{|\cos\theta_{had}^*| = |\cos\theta_{had}^*|} q_2 \underbrace{\frac{W}{\theta_2^*} \qquad q_2}_{|\cos\theta_{had}^*|} q_2 \underbrace{\frac{W}{\theta_2^*} \qquad q_2}_{|\cos\theta_{had$$

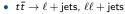
where
$$F_L + F_0 + F_R = 1$$


- \circ For decays $t \to had$ the d-type quark is not known, but can still extract limited information from $|\cos \theta_{had}^*|$
- SM values for helicity fractions^[1]: $F_0 = 0.687(5), F_L = 0.311(5), F_R = 0.0017(1)$


Tevatron results


- Long line of ever-improving measurements from Tevatron
 - \circ Latest DØ measurement^[1]:

- tt̄ → ℓ + jets, ℓℓ + jets
 Select tt̄ events using likelihood discriminator
- Fit both $\cos \theta^*$ and $|\cos \theta^*_{had}|$
- Results: $F_0 = 0.67 \pm 0.10$, $F_R = 0.02 \pm 0.05$



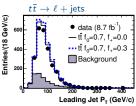
[1] Phys. Rev. D83 (2011) 032009

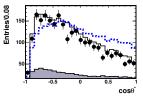
Tevatron results

- Long line of ever-improving measurements from Tevatron
 - Latest DØ measurement^[1]:

- Select $t\bar{t}$ events using likelihood discriminator
- Fit both $\cos \theta^*$ and $|\cos \theta^*_{had}|$
- Results: $F_0 = 0.67 \pm 0.10$, $F_R = 0.02 \pm 0.05$
- o CDF studies (updated in 2013):

- Fit to $\cos \theta^*$ in the dilepton channel^[3]
- Two channels are combined^[3]. Results:


$$F_0 = 0.84 \pm 0.10, \ F_R = -0.16 \pm 0.06$$


$$\int \mathcal{L} dt = 5.1 \, \text{fb}^{-1}$$

$$t \overline{t} \rightarrow \ell \ell + \text{jets} \xrightarrow{\text{Contract}} \text{Soft}$$

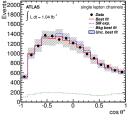
$$t \overline{t} \rightarrow \ell \ell + \text{jets} \xrightarrow{\text{Contract}} \text{Soft}$$

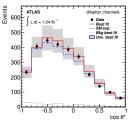
$$0 \text{best it}$$

^[1] Phys. Rev. D83 (2011) 032009

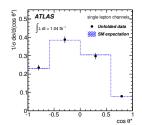
^[2] Phys. Rev. D87 (2013) 031104

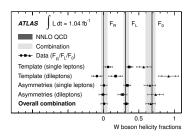
^[3] Phys. Lett. B722 (2013) 48


LHC results in $t\bar{t}$


• ATLAS measurement^[1] at 7 TeV:

- \circ $t\bar{t} \rightarrow \ell + \text{jets}, \ \ell\ell + \text{jets}$
- \circ Fit $\cos \theta^*$ (only $t \to b\ell\nu$ decays)
- $\hbox{O Unfold distr. in } \cos\theta^* \hbox{ and find} \\ \hbox{asymmetries } \cos\theta^* \gtrless \pm \left(\sqrt[3]{4} 1\right)$
- Combined results:


$$F_0 = 0.67 \pm 0.07, \; F_R = 0.01 \pm 0.05$$



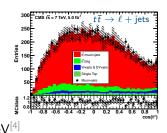
Two methods in parallel

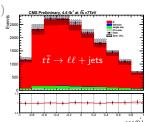
LHC results in $t\bar{t}$

• ATLAS measurement^[1] at 7 TeV:

- \circ $t\bar{t} \rightarrow \ell + \text{jets}, \ \ell\ell + \text{jets}$
- Fit $\cos \theta^*$ (only $t \to b\ell\nu$ decays)
- $\text{O Unfold distr. in } \cos \theta^* \text{ and find} \\ \text{asymmetries } \cos \theta^* \geqslant \pm \left(\sqrt[3]{4} 1\right)$
- Combined results:

$$\textit{F}_0 = 0.67 \pm 0.07, \; \textit{F}_R = 0.01 \pm 0.05$$

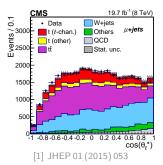

- In $\ell+{\rm jets}$ at 7 TeV also utilise $|\cos\theta^*_{\rm had}|$ but only when fixing $F_R=0$ in the fit
- Results:

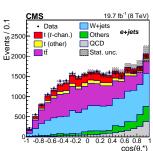

$$\begin{array}{l} \ell + \mathrm{jets} \; \left\{ \!\! \begin{array}{l} 7 \; \text{TeV:} \; F_0 = 0.68 \pm 0.04, \; F_R = 0.008 \pm 0.018 \\ 8 \; \text{TeV:} \; F_0 = 0.66 \pm 0.03, \; F_R = -0.009 \pm 0.021 \\ \ell \ell + \mathrm{jets} \end{array} \right. \\ \left. \begin{array}{l} \ell + \mathrm{jets} \end{array} \right. \; \left. \begin{array}{l} F_0 = 0.70 \pm 0.08, \; F_R = 0.01 \pm 0.05 \end{array} \right. \end{array}$$

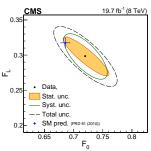
- [1] JHEP 06 (2012) 088
- [2] JHEP 10 (2013) 167
- [3] CMS PAS TOP-12-015
 - [4] CMS PAS TOP-13-008

Two methods

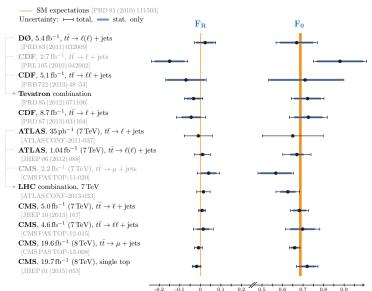
in parallel


W helicity in single-top signature


Measurement^[1] in single-top signature



- Selection optimised for t-channel single top
 - Orthogonal to the $t\bar{t}$ analyses
 - \bullet Utilise both t and $t\bar{t}$ events for the measurement
- Fit distribution in $\cos \theta^*$
- Results are competitive with $t\bar{t}$:


$$F_0 = 0.72 \pm 0.05, \ F_R = -0.018 \pm 0.022$$

Overview of results on W-boson helicities

Summary and conclusions

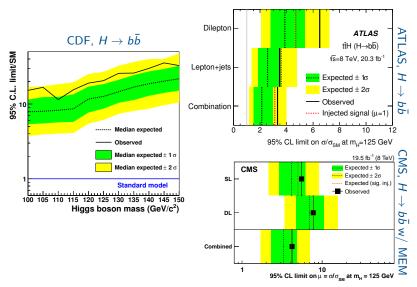
- Many excellent results delivered by Tevatron and LHC experiments
 - \circ Cross section of $t\bar{t}H$ measured with a precision of \sim 40% (\sim 100% w. r. t. the SM expectation)
 - FCNC limits are getting close to some BSM expectations (FV 2HDM)
 - \circ Longitudinal *W*-boson helicity fraction F_0 measured with a 2.3% precision. (Absolute) uncertainty on F_R has reached 0.02
- No deviations from the standard model found so far
- Expect significant improvements from LHC Run II
 - Especially, in Higgs boson properties and FCNC
- LHC is recommissioning. Stay tuned!

Summary and conclusions

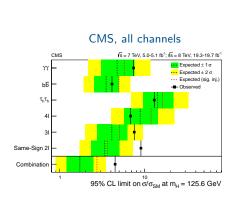
- Many excellent results delivered by Tevatron and LHC experiments
 - \circ Cross section of $t\bar{t}H$ measured with a precision of \sim 40% (\sim 100% w. r. t. the SM expectation)
 - FCNC limits are getting close to some BSM expectations (FV 2HDM)
 - \circ Longitudinal *W*-boson helicity fraction F_0 measured with a 2.3% precision. (Absolute) uncertainty on F_R has reached 0.02
- No deviations from the standard model found so far
- Expect significant improvements from LHC Run II
 - Especially, in Higgs boson properties and FCNC
- LHC is recommissioning. Stay tuned!

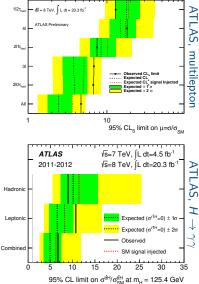
Thank you for your attention

Additional slides

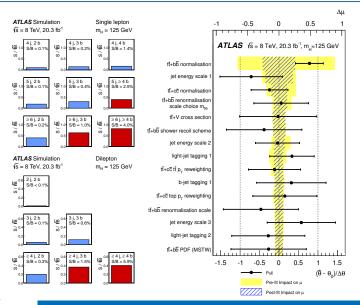

Cross sections

	tŦ	t₹H	tHq, SM	tHq , $\kappa_t=-1$
<i>p</i> p ̄, 1.96 TeV	$7.2\pm0.2\mathrm{pb}$	$\sim 4.9~\text{fb}^\dagger$		
pp, 7 TeV	172^{+6}_{-8} pb	$86^{+8}_{-11}\mathrm{fb}$		
<i>pp</i> , 8 TeV	$246^{+9}_{-11}pb$	$129^{+12}_{-16}\mathrm{fb}$	$18.3\pm0.4\text{fb}$	$234^{+5}_{-0}\mathrm{fb}$
<i>рр</i> , 14 TeV	$950^{+30}_{-40}\mathrm{pb}$	$610^{+70}_{-80}\mathrm{fb}$	$88.2^{+1.7}_{-0.0}\mathrm{fb}$	$980^{+30}_{-0}{ m fb}$


Czakon, Fiedler, Mitov, Phys. Rev. Lett. 110 (2013) 252004 Beenakker et al., Nucl. Phys. B653 (2003) 151–203 LHC Higgs cross section working group, arXiv:1101.0593, 8 TeV webpage Farina et al., JHEP 05 (2013) 022

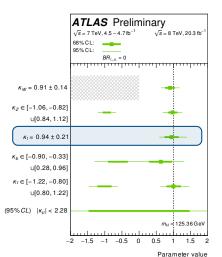

 $^{^{\}dagger}$ $m_H=120\,{
m GeV};$ everywhere else $m_H=125\,{
m GeV}$

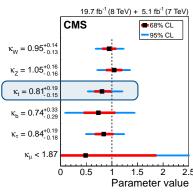
Upper limits in $t\bar{t}H$ searches



Upper limits in $t\bar{t}H$ searches

ATLAS $t\bar{t}H$, $H \rightarrow b\bar{b}$ search

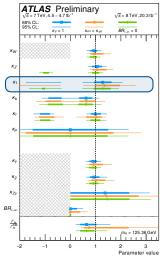

Systematics in combined CMS $t\bar{t}H$ search

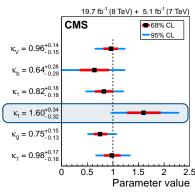

Combined search in the $b\bar{b}$, $\gamma\gamma$, and multileptonic decay channels. Prior uncertainties, effects on rates only (i. e. not impacts on μ or limits)

	Rate ur	ncertainty	
Source	Signal	Backgrounds	Shape
Experimen	tal		
Integrated luminosity	2.2-2.6%	2.2 – 2.6%	No
Jet energy scale	0.0-8.4%	0.1-11.5%	Yes
CSV b-tagging	0.9-21.7%	3.0-29.0%	Yes
Lepton reco. and ID	0.3-14.0%	1.4-14.0%	No
Lepton misidentification rate (H \rightarrow leptons)	_	35.1-45.7%	Yes
Tau reco. and ID (H \rightarrow hadrons)	11.3-14.3%	24.1 – 28.8%	Yes
Photon reco. and ID (H \rightarrow photons)	1.6-3.2%	_	Yes
MC statistics	_	0.2 – 7.0%	Yes
Theoretica	ıl		
NLO scales and PDF	9.7-14.8%	3.4-14.7%	No
MC modeling	2.3-5.1%	0.9 – 16.8%	Yes
Top quark $p_{\rm T}$	_	1.4 – 6.9%	Yes
Additional hf uncertainty (H \rightarrow hadrons)	_	50%	No
H contamination (H \rightarrow photons)	36.7-	No	
WZ (ZZ) uncertainty (H \rightarrow leptons)	_	22% (19%)	No

ATLAS and CMS combinations

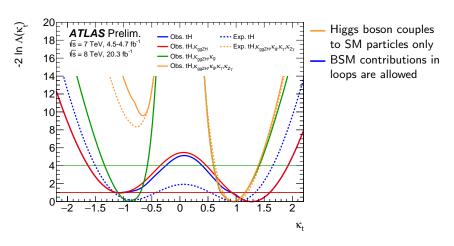
No BSM particles are allowed in loop-induced higgs couplings or higgs decays





 κ_t is largely constrained from gg o H

ATLAS and CMS combinations


Allow loop-induced higgs couplings to depart from SM values

CMS assume $\Gamma_{BSM}=0$ and $\kappa_X>0$. In ATLAS plot $\Gamma_{BSM}=0$ is shown with green markers

ATLAS constraints on κ_t

Predicted FCNC branching ratios

Updated expectations (still w/o indirect contraints from LHC though):

	Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
S	$t \to Zu$	7×10^{-17}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	
ratios	$t\to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
	$t \to gu$	4×10^{-14}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
hing	$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
Brancl	$t \to \gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	_
Bris	$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
	$t \to hu$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\leq 10^{-9}$	_
	$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Snowmass 2013 Top-quark working group report

Systematics in CMS FCNC *tZq* search

Prior uncertainties, effects on signal acceptance only (not impacts on limits)

Source	Uncertainty %
Renormalization/factorization scales	12
Parton distribution functions	7
$t\bar{t}$ cross section	7
Parton matching threshold	6
Lepton selection	6
Trigger efficiency	5
b-tagging	5
Top-quark mass	4
Jet energy scale	4
Missing transverse energy resolution	3
Pileup modeling	3
Total	20

Systematics in ATLAS FCNC tgq search

Prior uncertainties, effects on rates only (not impacts on limits)

Systematic	Signal	W+jets	W+HF+jets
Jet energy scale	< ±1%	±13%	±3%
Jet energy resolution	±4%	±20%	±3%
b-tagging efficiency	±5%	±1%	±1%
c-tagging efficiency	< ±1%	±3%	±20%
Mistag rate	< ±1%	±26%	< ±1%
Muon momentum scale	< ±1%	< ±1%	< ±1%
Muon identification	±1%	±1%	±1%
Electron energy scale	< ±1%	< ±1%	< ±1%
Electron identification	±1%	±1%	±1%
Missing transverse momentum	< ±1%	< ±1%	< ±1%
PDF	±3%	±4%	±8%
W+jets modelling	_	< ±1%	< ±1%
Cross section	_	24%	55%
Systematic	tī	single-top	Z + jets
Jet energy scale	±13%	±4%	±4%
Jet energy resolution	±1%	+2%	+6%
	±1 /0		±0%
b-tagging efficiency	±5%	±5%	±4%
b-tagging efficiency c-tagging efficiency Mistag rate	±5%	±5%	±4% ±5%
c-tagging efficiency Mistag rate	±5% < ±1%	±5% < ±1%	±4%
c-tagging efficiency	±5% < ±1% < ±1%	±5% < ±1% < ±1%	±4% ±5% ±3%
c-tagging efficiency Mistag rate Muon momentum scale	±5% < ±1% < ±1% < ±1%	±5% < ±1% < ±1% < ±1%	±4% ±5% ±3% < ±1% ±1%
c-tagging efficiency Mistag rate Muon momentum scale Muon identification	±5% < ±1% < ±1% < ±1% ±1%	±5% < ±1% < ±1% < ±1% ±1%	±4% ±5% ±3% < ±1%
c-tagging efficiency Mistag rate Muon momentum scale Muon identification Electron energy scale	$\pm 5\%$ $< \pm 1\%$ $< \pm 1\%$ $< \pm 1\%$ $= \pm 1\%$ $= \pm 1\%$	±5% < ±1% < ±1% < ±1% < ±1% < ±1%	±4% ±5% ±3% < ±1% ±1% < ±1%
c-tagging efficiency Mistag rate Muon momentum scale Muon identification Electron energy scale Electron identification	$\pm 5\%$ $< \pm 1\%$ $< \pm 1\%$ $< \pm 1\%$ $\pm 1\%$ $< \pm 1\%$ $< \pm 1\%$	±5% < ±1% < ±1% < ±1% < ±1% < ±1% = ±1%	±4% ±5% ±3% < ±1% = ±1% < ±1% < ±1%
c-tagging efficiency Mistag rate Muon momentum scale Muon identification Electron energy scale Electron identification Missing transverse momentum	$\begin{array}{l} \pm 5 \% \\ < \pm 1 \% \end{array}$	±5% < ±1% < ±1% < ±1% < ±1% < ±1% < ±1% < ±1% < ±1%	±4% ±5% ±3% < ±1% = ±1% < ±1% < ±1% = ±3%

Systematics in CMS FCNC tHq search

Prior uncertainties, effects on event yields only (not impacts on limits)

Source of uncertainty	Magnitude (%)
Luminosity	2.6
PDF	10
$E_{\rm T}^{\rm miss}(>50~{\rm GeV})$ resolution correction	4
Jet energy scale	0.5
<i>b</i> -tag scale factor $(t\bar{t})$	6
$e(\mu)$ ID/isolation (at $p_T = 30$ GeV)	0.6 (0.2)
Trigger efficiency	5
tt misidentification	50
tt, WZ, ZZ cross sections	10, 15, 15
$\tau_{\rm h}$ misidentification	30
Diphoton background	50

W helicities from asymmetries in ATLAS

Utilise asymmetries

$$A_{\pm} = \frac{N(\cos \theta^* > z_{\mp}) - N(\cos \theta^* < z_{\mp})}{N(\cos \theta^* > z_{\mp}) + N(\cos \theta^* < z_{\mp})}, \quad z_{\mp} = \mp \left(\sqrt[3]{4} - 1\right)$$

• They relate^[1] to W-helicity fractions allowing to extract $F_{L,R,0}$ easily:

$$\begin{cases} A_{+} = 3\beta \left(F_{0} + \left(1 + \beta\right) F_{R}\right), & \beta = \sqrt[3]{2} - 1, \\ A_{-} = 3\beta \left(F_{0} + \left(1 + \beta\right) F_{L}\right), \\ F_{R} + F_{L} + F_{0} = 1 \end{cases}$$

• Despite the simplicity, the asymmetries are quite sensitive to V_R , g_L , g_R couplings $^{[1]}$

Signal modelling in CMS W-helicity measurements

- In all CMS analyses signal is modelled by reweighting SM sample(s)
 - Probability density for a single decaying top quark:

$$\rho\left(\cos\theta^{*};\boldsymbol{F}\right)=\frac{3}{8}F_{L}\left(1-\cos\theta^{*}\right)^{2}+\frac{3}{4}F_{0}\sin^{2}\theta^{*}+\frac{3}{8}F_{R}\left(1+\cos\theta^{*}\right)^{2},\label{eq:epsilon}$$

where $\mathbf{F} \equiv \{F_L, F_0, F_R\}$ are the helicity fractions and $\cos \theta^*$ is calculated at the generator level

Event weight for a target configuration F is calculated as

$$w(\mathbf{F}) = \prod_{i} \frac{\rho(\cos \theta_{i}^{*}; \mathbf{F})}{\rho(\cos \theta_{i}^{*}; \mathbf{F}_{SM})},$$

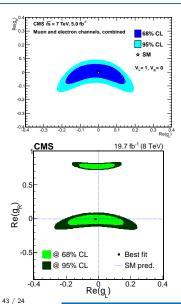
where the product is taken over all top quarks in the event

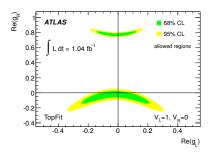
- \circ (Two) components of **F** are used directly in the fit to reconstructed $\cos \theta^*$ as the parameters of interest
- In ATLAS, CDF, and DØ measurements the signal was modelled as a mixture of three templates
 - Correspond to F_L , F_0 , or $F_R = 1$, the other two fractions are set to zero

Systematics in ATLAS W-helicity measurement

Source	Uncert	Uncertainties			
	F_0	$F_{\rm L}$	$F_{\rm R}$		
Signal and background modelli	ng				
Generator choice	0.012	0.009	0.004		
ISR/FSR	0.015	0.008	0.007		
PDF	0.011	0.006	0.006		
Top quark mass	0.016	0.009	0.008		
Misidentified leptons	0.020	0.013	0.007		
W+jets	0.016	0.008	0.008		
Other backgrounds	0.006	0.003	0.003		
Method-specific uncertainties	0.031	0.016	0.035		
Detector modelling					
Lepton reconstruction	0.013	0.006	0.007		
Jet energy scale	0.026	0.014	0.012		
Jet reconstruction	0.012	0.005	0.007		
b-tagging	0.007	0.003	0.004		
Calorimeter readout	0.009	0.005	0.004		
Luminosity and pileup	0.009	0.004	0.005		
Total systematic uncertainty	0.06	0.03	0.04		

CMS *W*-helicity measurement in ℓ + jets, 7 TeV

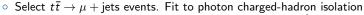

	μ -	+jets (cos	θ^*)	e+	jets $(\cos \theta)$	*)	ℓ-	+jets (cos	9*)
Systematic	31) fit	2D fit	31	fit	2D fit	31) fit	2D fit
Uncertainties	$\pm \Delta F_0$	$\pm \Delta F_L$	$\pm \Delta F_0$	$\pm \Delta F_0$	$\pm \Delta F_L$	$\pm \Delta F_0$	$\pm \Delta F_0$	$\pm \Delta F_L$	$\pm \Delta F_0$
JES	0.005	0.003	0.001	0.006	0.002	0.003	0.006	0.003	0.001
JER	0.009	0.005	0.001	0.014	0.009	0.003	0.011	0.007	0.001
Lepton eff.	0.001	0.001	0.001	0.009	0.012	0.015	0.001	0.002	0.002
b-tag eff.	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$
Pileup	0.013	0.011	0.008	0.008	0.007	0.005	0.002	$< 10^{-3}$	0.008
Single-t bkg.	0.004	$< 10^{-3}$	0.003	0.004	$< 10^{-3}$	0.004	0.004	0.001	0.003
W+jets bkg.	0.019	0.007	0.006	0.009	0.006	0.022	0.013	0.004	0.006
DY+jets bkg.	0.002	0.001	0.001	0.001	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	0.001
MC statistics	0.016	0.012	0.009	0.019	0.015	0.012	0.016	0.012	0.010
Top-quark mass	0.011	0.008	0.007	0.025	0.018	0.014	0.016	0.011	0.019
$t\bar{t}$ scales	0.013	0.009	0.007	0.015	0.018	0.030	0.009	0.009	0.011
$t\overline{t}$ match. scale	0.004	0.001	0.006	0.010	0.013	0.016	0.011	0.010	0.008
PDF	0.002	0.001	0.003	0.004	0.002	0.002	0.002	$< 10^{-3}$	0.003

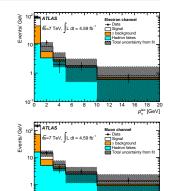

CMS *W*-helicity measurement in ℓ + jets, 7 TeV

	Leptonic branch: $\cos \theta^*$							
Fit	Channel	$F_0 \pm (\text{stat.}) \pm (\text{syst.})$	$F_L \pm {\rm (stat.)} \pm {\rm (syst.)}$	$F_R \pm ({\rm stat.}) \pm ({\rm syst.})$	$\rho_{0L}^{\mathrm{stat}}$			
3D	$\mu + \mathrm{jets}$	$0.674 \pm 0.039 \pm 0.035$	$0.314 \pm 0.028 \pm 0.022$	$0.012 \pm 0.016 \pm 0.020$	-0.95			
3D	e+jets	$0.688 \pm 0.045 \pm 0.042$	$0.310 \pm 0.033 \pm 0.037$	$0.002 \pm 0.017 \pm 0.023$	-0.95			
2D	$\mu + \mathrm{jets}$	$0.698 \pm 0.021 \pm 0.019$	$0.302 \pm 0.021 \pm 0.019$	fixed at 0	-1			
2D	e+jets	$0.691 \pm 0.025 \pm 0.047$	$0.309 \pm 0.025 \pm 0.047$	fixed at 0	-1			
Hadronic branch: $ \cos^{\text{had}} \theta^* $								
Fit	Channel	$F_0 \pm (\text{stat.}) \pm (\text{syst.})$	$F_L \pm ({\rm stat.}) \pm ({\rm syst.})$	$F_R \pm (\text{stat.}) \pm (\text{syst.})$	ρ_{0L}			
2D	$\mu + \mathrm{jets}$	$0.651 \pm 0.060 \pm 0.084$	$0.349 \pm 0.060 \pm 0.084$	fixed at 0	-1			
2D	e+jets	$0.629 \pm 0.060 \pm 0.093$	$0.371 \pm 0.060 \pm 0.093$	fixed at 0	-1			

Fit	Channel(s)	Branch	Frac	\pm tion \pm (stat.) \pm (syst.) [total]	$ ho_{0L}^{ ext{total}}$
			F_0	$0.682 \pm 0.030 \pm 0.033 \ [0.045]$	
3D	$\ell + \mathrm{jets}$	1	F_L	$0.310 \pm 0.022 \pm 0.022 [0.032]$	-0.95
			F_R	$0.008 \pm 0.012 \pm 0.014 [0.018]$	
2D	$\mu+{ m jets}$	l+h	F_0	$0.694 \pm 0.020 \pm 0.025 \ [0.032]$	
			F_L	$0.306 \pm 0.020 \pm 0.025 \ [0.032]$	-1
2D	e+jets	l+h	F_0	$0.674 \pm 0.025 \pm 0.028 \ [0.037]$	
			F_L	$0.326 \pm 0.025 \pm 0.028 [0.037]$	-1
2D	$\ell + \mathrm{jets}$	l+h	F_0	$0.685 \pm 0.017 \pm 0.021 \ [0.027]$	
			F_L	$0.315 \pm 0.017 \pm 0.021 \ [0.027]$	-1

Limits on anomalous Wtb couplings




$t\bar{t}\gamma$

- ATLAS measurement at 7 TeV^[1]
 - \circ $t\bar{t} \rightarrow \ell + \text{jets}$
 - Fiducial phase space
 - Photon: $p_{\rm T} > 20 \,{\rm GeV}, \; |\eta| < 2.37$
 - Leptons (e/μ) : $p_T > 25 \, \text{GeV}$, $|\eta| < 2.5$
 - Jets: $p_{\rm T} > 25\,{\rm GeV},\ |\eta| < 2.5$
 - Fit photon track-isolation p_T
 - $\sum p_{\rm T}$ of tracks within $\Delta R < 0.2$
 - Data-driven templates for prompt photons and fakes
 - Results:
 - Observation of $t\bar{t}\gamma$: 5.3 σ
 - $\sigma_{\rm fid}=76\pm 8\,{\rm (stat.)}\,^{+17}_{-13}\,{\rm (syst.)}\,\pm 1\,{\rm (lumi.)}\,{\rm fb}$ theory prediction: 48 $\pm\,10\,{\rm fb}$

•
$$R \equiv \sigma_{t\bar{t}\gamma}/\sigma_{t\bar{t}} = (1.07 \pm 0.07 \, (\text{stat.}) \, \pm 0.27 \, (\text{syst.})) \cdot 10^{-2}$$

piso [GeV]